Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224341

RESUMO

An abundant literature reports on 'sequential effects' observed when humans make predictions on the basis of stochastic sequences of stimuli. Such sequential effects represent departures from an optimal, Bayesian process. A prominent explanation posits that humans are adapted to changing environments, and erroneously assume non-stationarity of the environment, even if the latter is static. As a result, their predictions fluctuate over time. We propose a different explanation in which sub-optimal and fluctuating predictions result from cognitive constraints (or costs), under which humans however behave rationally. We devise a framework of costly inference, in which we develop two classes of models that differ by the nature of the constraints at play: in one case the precision of beliefs comes at a cost, resulting in an exponential forgetting of past observations, while in the other beliefs with high predictive power are favored. To compare model predictions to human behavior, we carry out a prediction task that uses binary random stimuli, with probabilities ranging from 0.05 to 0.95. Although in this task the environment is static and the Bayesian belief converges, subjects' predictions fluctuate and are biased toward the recent stimulus history. Both classes of models capture this 'attractive effect', but they depart in their characterization of higher-order effects. Only the precision-cost model reproduces a 'repulsive effect', observed in the data, in which predictions are biased away from stimuli presented in more distant trials. Our experimental results reveal systematic modulations in sequential effects, which our theoretical approach accounts for in terms of rationality under cognitive constraints.


Assuntos
Teorema de Bayes , Humanos , Probabilidade
2.
Psychol Rev ; 128(5): 879-912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516148

RESUMO

To make informed decisions in natural environments that change over time, humans must update their beliefs as new observations are gathered. Studies exploring human inference as a dynamical process that unfolds in time have focused on situations in which the statistics of observations are history-independent. Yet, temporal structure is everywhere in nature and yields history-dependent observations. Do humans modify their inference processes depending on the latent temporal statistics of their observations? We investigate this question experimentally and theoretically using a change-point inference task. We show that humans adapt their inference process to fine aspects of the temporal structure in the statistics of stimuli. As such, humans behave qualitatively in a Bayesian fashion but, quantitatively, deviate away from optimality. Perhaps more importantly, humans behave suboptimally in that their responses are not deterministic, but variable. We show that this variability itself is modulated by the temporal statistics of stimuli. To elucidate the cognitive algorithm that yields this behavior, we investigate a broad array of existing and new models that characterize different sources of suboptimal deviations away from Bayesian inference. While models with "output noise" that corrupts the response-selection process are natural candidates, human behavior is best described by sampling-based inference models, in which the main ingredient is a compressed approximation of the posterior, represented through a modest set of random samples and updated over time. This result comes to complement a growing literature on sample-based representation and learning in humans. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Adaptação Fisiológica , Aprendizagem , Algoritmos , Teorema de Bayes , Humanos
3.
Entropy (Basel) ; 23(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068364

RESUMO

When humans infer underlying probabilities from stochastic observations, they exhibit biases and variability that cannot be explained on the basis of sound, Bayesian manipulations of probability. This is especially salient when beliefs are updated as a function of sequential observations. We introduce a theoretical framework in which biases and variability emerge from a trade-off between Bayesian inference and the cognitive cost of carrying out probabilistic computations. We consider two forms of the cost: a precision cost and an unpredictability cost; these penalize beliefs that are less entropic and less deterministic, respectively. We apply our framework to the case of a Bernoulli variable: the bias of a coin is inferred from a sequence of coin flips. Theoretical predictions are qualitatively different depending on the form of the cost. A precision cost induces overestimation of small probabilities, on average, and a limited memory of past observations, and, consequently, a fluctuating bias. An unpredictability cost induces underestimation of small probabilities and a fixed bias that remains appreciable even for nearly unbiased observations. The case of a fair (equiprobable) coin, however, is singular, with non-trivial and slow fluctuations in the inferred bias. The proposed framework of costly Bayesian inference illustrates the richness of a 'resource-rational' (or 'bounded-rational') picture of seemingly irrational human cognition.

4.
Annu Rev Neurosci ; 44: 403-424, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863252

RESUMO

Neurons in the brain represent information in their collective activity. The fidelity of this neural population code depends on whether and how variability in the response of one neuron is shared with other neurons. Two decades of studies have investigated the influence of these noise correlations on the properties of neural coding. We provide an overview of the theoretical developments on the topic. Using simple, qualitative, and general arguments, we discuss, categorize, and relate the various published results. We emphasize the relevance of the fine structure of noise correlation, and we present a new approach to the issue. Throughout this review, we emphasize a geometrical picture of how noise correlations impact the neural code.


Assuntos
Encéfalo , Neurônios , Potenciais de Ação , Modelos Neurológicos
5.
Neuron ; 99(1): 117-134.e11, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937281

RESUMO

Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.


Assuntos
Retroalimentação , Interneurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Células Horizontais da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados , Células Bipolares da Retina , Sinapses
6.
PLoS Comput Biol ; 9(11): e1003289, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244119

RESUMO

Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.


Assuntos
Adaptação Fisiológica/fisiologia , Modelos Biológicos , Células Fotorreceptoras/fisiologia , Animais , Biologia Computacional , Humanos , Luz , Transdução de Sinal Luminoso/fisiologia
7.
Curr Opin Neurobiol ; 21(5): 664-71, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21641794

RESUMO

How does the connectivity of a neuronal circuit, together with the individual properties of the cell types that take part in it, result in a given computation? We examine this question in the context of retinal circuits. We suggest that the retina can be viewed as a parallel assemblage of many small computational devices, highly stereotypical and task-specific circuits afferent to a given ganglion cell type, and we discuss some rules that govern computation in these devices. Multi-device processing in retina poses conceptual problems when it is contrasted with cortical processing. We lay out open questions both on processing in retinal circuits and on implications for cortical processing of retinal inputs.


Assuntos
Modelos Neurológicos , Neurônios/classificação , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Animais , Simulação por Computador , Humanos , Vias Visuais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...